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Abstract
We show that a complex PT-symmetric potential possessing real eigenvalues
can also have real and closed phase-space orbits but in a novel way. Further,
the phase-space quantization correctly leads to energy-eigenvalues.

PACS numbers: 03.65.−w, 03.65.Ge, 45.50.Pk

The concept of classical closed phase-space orbits is known to have provided a doorway
from classical to quantum and statistical mechanics. This is how the quantum mechanics was
developed through various stages. On the other hand, the recent [1, 2] complex PT-symmetric
extension of quantum mechanics unlike its conventional counterpart has been discovered
almost accidentally. Here the quantum results [1, 6] have come out first and the classical
mechanical aspects of such non-Hermitian Hamiltonians remain elusive. Therefore, if it is
possible to have the real closed phase-space orbits yet again, we may well go from quantum
to classical mechanical aspects of complex PT-symmetric potentials.

This letter intends to provide this missing link by revealing that the complex PT-symmetric
potentials can have real closed classical phase-space orbits in a novel way and the phase-space
quantization à la Wilson and Sommerfeld works again.

Earlier, for two complex PT-symmetric potentials, the WKB quantization employing non-
generic transformation of integrals has been found to work [1, 8]. For classical trajectories,
classical equations of motion have been solved and portraits of (xreal, ximag) have been plotted
and systematized [9, 10]. The Liapunov exponent for a model potential has been found positive
to conclude chaos in one dimension [10]. In these investigations, the question of trajectories
in the usual sense of phase space, (x, p), has not been addressed. The interesting approach of
complex two-dimensional phase space wherein x → x1 + ip2 and p → x2 + ip1 [11] is also
not promising in this regard.

First, in the following, we define the new potentials, state and prove certain theorems that
will be useful in the following.

PT-symmetric potentials can in general be expressed as

VPT(x) = Ve(x) + iVo(x), (1)
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where Ve(x) and Vo(x) are real and of even and odd parities, respectively. Also Ve(x) is
binding potential. Let us also define Ṽ PT(x) = VPT(x + ib) this also is PT-symmetric.

Theorem 1. Both the potentials Ṽ PT(x) and VPT(x) possess an identical spectrum.

Proof. In view of [12], we have the similarity transformation as

e−bpVPT(x) ebp = VPT(x + ib) = ṼPT(x). (2)

Hence both VPT(x) and Ṽ PT(x) will possess an identical spectrum. �

Theorem 2. The classical turning points of a complex PT-symmetric potential for a real
energy, E, essentially occur as (z,−z∗) : (−a + ib, a + ib) or ic, where a, b, c are real
numbers.

(A real equation which is real on real line as per the fundamental theorem of algebra has
either real or complex-conjugate roots whereas as a complex equation has at least one complex
root. Theorem 2 can also be seen as a non-trivial extension of the fundamental theorem of
algebra).

Proof. The equation, E = VPT(x), determining the classical turning points for a fixed real
E can be written as fe(x)+ ifo(x) = 0. Here fe,o(x) are real and of definite parity (even/odd).
So if z is a root, we have fe(z) + ifo(z) = 0. Performing complex conjugation, we get
fe(z

∗) − ifo(z
∗) = 0 implying that fe(−z∗) + ifo(−z∗) = 0. This completes the proof.

Further, the turning points will be like (−a + ib, a + ib) or purely imaginary like ic. �

As P: z → −z and T: z → z∗, we note that if z is a turning point, so is −z∗. In fact, −z∗

is a PT image of z and hence equivalent. Thus z → −z∗ is a periodic orbit [15] of a novel
type [7] in a phase space that is PT-symmetrized.

Theorem 3. For a PT-symmetric potential the action integral

J (E) =
∮

p(z) dz (3)

is real for a real energy. The contour here consists of a straight line path from z = −a + ib to
z = a + ib and back.

Proof. The equation of motion for VPT(z) can be written as

p(z) = m
dz

dt
= ±

√
2m(E − VPT(z)), (4)

let us transform the above equation using z → x + ib, to get

p(z) = ±
√

2m(E − Ṽ PT(x)), (5)

J (E) =
∫ a+ib

−a+ib
+

√
2m[E − VPT(z)] dz +

∫ −a+ib

a+ib
−

√
2m[E − VPT(z)] dz (6a)

J (E) = 2
∫ a+ib

−a+ib

√
2m[E − VPT(z)] dz (6b)

J (E) = 2
∫ a

−a

√
2m[E − Ṽ PT(x)] dx = 2

∫ a

−a

[pr(x) + ipi(x)] dx = 2
∫ a

−a

pr(x) dx. (6c)
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Here

pr(x) = Re
(√

2m[E − Ṽ PT(x)]
)

and pi(x) = Im
(√

2m[E − ṼPT(x)]
)
. (7)

Consequent to the definition of PT-symmetric potentials (1), pr(x) and pi(x) are even and odd
functions of x, respectively. This explains the last part of equation (6c). We have phase-space
segregated in two parts: (x, pr(x)) and (x, pi(x)). For a real value of E, the trajectories in the
former part will be symmetric about x = 0 enclosing a finite area from x = −a to x = a.
However, in the latter part the trajectories will be essentially antisymmetric about x = 0
nullifying the area from x = −a to x = a. �

In order to keep the one-dimensional character of VPT(x) intact unlike a previous work
[11], at a given energy, E, we absorb the imaginary part of the turning point Ib(E) in the
potential, VPT(x). Consequently the potential changes to another PT-symmetric potential,
Ṽ PT(x), that is energy dependent now. However, as per theorem 1, both VPT(x) and Ṽ PT(x + ib)

will have identical spectrum. The remarkable achievement, in going from former to the latter
potential, is that the latter one will have real turning points at x = ±a allowing us to segregate
the phase space as concluded above (7)—much in the same way as for the usual real potentials.
From theorems (1–3), the following important points emerge.

• It is known that all VPT(x) do not necessarily possess real eigenvalues, they will otherwise
possess complex-conjugate pairs of eigenvalues. Interestingly, by looking merely at
potential, so far one cannot assess whether there will be a real discrete spectrum.
However, now in view of theorems 2, 3 and condition (8), one can ascertain using
classical turning points of (1) before going in for the quantization (8) or the exact solution
of Schrödinger equation, whether or not there will be a real discrete spectrum. And
the necessary condition for this will be the existence of a pair of turning points like
(−a + ib, a + ib) (with a �= 0) for real energies, provided the real part of the potential
is a well. For instance, the potential, Vν(x) = −(ix)ν , since for 0 < ν � 1 the
equation, Vν(x) = E, does not admit any solution moreover real part of the potential is
a barrier (not a well). This predicts a priori the absence of real discrete spectrum for
this potential as observed in the exact calculations in [1]. The real part of V (x) = (ix)ν

is a well but as the equation ((ix)ν = E, 0 < ν < 1) admits only one root, this
potential too does not possess real eigenvalues. More interestingly, the potential
V (x) = −V0c/(c

2 + x2) + iV0x/(c2 + x2), V0c > 0 does not admit real eigenvalues
(under Dirichlet boundary condition �(±∞) = 0) as one can readily check that it is
nothing but V (x) = −iV0/(x − ic) entailing only one turning point.

• Eventually, we propose to set J (E) that is nothing but the area enclosed for a fixed orbit
in (x, pr(x)) in equation (6b) equal to (n + 1/2)h and have a quantization law as

1

π

∫ a

−a

√
2m(E − VPT(x + ib)) dx =

(
n +

1

2

)
h̄, (8)

such that VPT(−a + ib) = E = VPT(a + ib) (see theorem 2). In fact for analytic
evaluations, one should rather use equation (6b), whereas equation (6c) or (8) is convenient
for numerical integrations.

• Now we can express the classical time-period of oscillation associated with the orbits
of (x, pr(x)) for a fixed energy for a complex PT-symmetric potential. Once again two
options are available to us from equation (4):

T (E) =
∫ a+ib

−a+ib

dz√
2m[E − VPT(z)]

=
∫ a

−a

dx√
2m[E − VPT(x + ib)]

. (9)
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We have investigated several PT-symmetric potentials to appreciate the phase-space
trajectories and the validity of the quantization law (8). We would like to present here an
illustration. In the calculations below, we shall be using 2m = 1 = h̄.

Illustration (PT-symmetric Scarf II potential). This complex potential model is immensely
useful in PT-symmetric quantum mechanics for its amenability to exact analytic solutions. It
was realized quite late that this could be the first exactly solvable model entailing both real and
complex-conjugate pairs of eigenvalues when the parameter V2 passes over a critical value of
V1 + 1/4 [3], where

VS(x) = −V1 sech2 (x) + iV2 sech x tanh x, V1 > 0. (10)

This style of writing Scarf II potential has been found more inspiring in later works. The exact
eigenvalues of (10) are given as

En = −(
n + 1

2 − 1
2

[√
V1 + V2 + 1/4 +

√
V1 − V2 + 1/4

])2
, (11)

where 0 � n � 1
2

[√
V1 + V2 + 1/4 +

√
V1 − V2 + 1/4 − 1/2

]
. The classical turning points for

real and negative energies are given as

s1,2 =

 iV2 ±

√
−V 2

2 − 4E(E + V1)

2E


 , (12)

where z1,2 = sinh−1(s1,2). Here z1,2 mean ∓a + ib. We now proceed to find the action integral
J (E) (6a) for (10). Having used s = sinh x, we have

1

π

∫ s2

s1

√
Es2 − iV2s + (E + V1)

1 + s2
ds =

(
n +

1

2

)
. (13)

Fortunately, this integral is do-able. We see that 1
1 + s2 = 1

2

(
1

1 + is + 1
1 − is

)
, and use the

substitutions 1 + is = u and 1 − is = v in two integrands to finally find the integrals of
the type:

∫
dx

√
ax2 + bx + c/x.

En = −(
n + 1

2 − 1
2

[√
V1 + V2 +

√
V1 − V2

])2
, (14)

where 0 � n � 1
2

[√
V1 + V2 +

√
V1 − V2 − 1/2

]
. Note the typical disappearance of 1/4

in the above WKB-result as compared to the exact quantal result (11). In this illustration,
we take V1 = 30, V2 = 5 in arbitrary units, then the potential VS(x) (10) possesses five
real discrete eigenvalues. These WKB (exact) values are E0 = −24.58(−24.81), E1 =
−15.66(−15.84), E2 = −8.75(−8.88), E3 = −3.83(−3.92), E4 = −0.91(−0.96) as per
equations (14) and (11).

We obtain the classical time period for VS(x) as

T (E) =
∫ s2

s1

ds√
Es2 − iV2s + (E + V1)

= π√−E
, (15)

where −V1 � E < 0.
We also find that the usage of super-symmetric WKB (SWKB) ansatz [13] using complex

supersymmetric superpotential, W(x) [14], yields the exact expressions for eigenvalues of (10)
as given in (11), provided we use the PT-symmetric turning points arising from E = W 2(x).

The phase-space orbits are plotted using equation (7) in figures 1 and 2 for three energies
which have been chosen as first three eigenvalues. The solid line in these plots denotes the
direction from left to right (w.r.t. x = 0) when one considers ‘+’ signs in (7). The dashed
line denotes the opposite sense of direction (mirror image of the corresponding solid line
orbit). The area integral due to solid and dashed parts in (x, pr(x)) will be nonzero (due to
symmetry w.r.t x = 0) and the area integral for the solid and the dashed curve in (x, pi(x))
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Figure 1. The phase space: (x, pr(x)) for VS(x) (10), the subscript ‘r’ stands for ‘real’ (7). The
labels 0, 1, 2 denote the first three eigenvalues (see the text). The solid-line shows a symmetric
orbit starting from left to right and the dashed line shows the time-reversed orbit. These two parts
make a closed orbit and contribute equally to the area enclosed for a fixed real energy. This area
further determines if the given energy is an eigenvalue (see equations (6) and (8)).

Figure 2. The phase space: (x, pi(x)) for VS(x), the subscript i stands for ‘imaginary’ (7). The
labels 0, 1, 2 denote the first three energy eigenvalues (see the text). The solid-line shows an
antisymmetric orbit starting from left to right and the dashed line shows the time-reversed orbit.
The area integral for these two parts vanishes and they make an intersecting orbit not enclosing
any area for the fixed real energy.

will essentially vanish (due to antisymmetry w.r.t. x = 0). Thus, in the phase space the closed
and non-intersecting (intersecting) orbits enclose a finite (zero) area justifying the real discrete
spectrum for the PT-symmetric potential.

We have also analysed the Hamiltonians of the type H = p2 − (ix)ν [1, 4] when
2.0 < ν < 5.0 to test the occurrence of closed and smooth phase-space orbits like in figures 1
and 2 leading to correct energy quantization.

The simpler models of complex PT-symmetric potentials such as V (x) = x2

2 + ix and
V (x) = cosh x + i sinh x give rise only to (x, pr(x)) and pi(x) = 0. This can be readily
understood as both of them can be rewritten as V (x + ic) for some real value of c.
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The present work eventually leads to a novel segregation of the classical phase space,
(x, p(x)), in two parts namely, (x, pr(x)) and (x, pi(x)) as displayed in figures 1 and 2, when
the potential is complex PT-symmetric. The most serious doubt arising here is whether in
doing so there is a loss or discounting of phase-space area as the intersecting and antisymmetric
orbits in part (x, pi(x)) do not contribute to the net phase-space area making a way for real
eigenvalues. This doubt is dispelled as one finds a fair reproduction of the exact quantal
eigenvalues in an approximate way in our illustrations and also in several other model
potentials. From this classical analysis, it also turns out that the existence of complex pairs
of classical turning points such as (−a + ib, a + ib) (with a �= 0) is the necessary condition
for a real discrete spectrum of a complex PT-symmetric potential. Equation (8) facilitates the
tool to find real eigenvalues for a complex PT-symmetric potential. Having found the real
phase-space orbits for the complex PT-symmetric potentials, it would be interesting to find
how periodic orbit theory [15] would handle the new potentials in obtaining their real discrete
spectrum.

The action integral involved in (8) ought to be carried out in complex plane along a
straight line from z to −z∗. Singularities occurring on this straight line are specific to the
potentials which could also be of exotic nature. Remarkably, while doing the integrations, we
find that, even if these points are disregarded, they give rise to a discontinuity in (x, pi(x))

and a non-differentiability in (x, pr), irrespective of a finite area enclosed in (x, pr(x)). This
feature may be usefully interpreted in sorting out spurious eigenvalues. This feature may also
warrant the inapplicability or failure of semi-classical method itself for the given potential.

Finally, we conclude by remarking that complex PT-symmetric potentials have been
shown here to share even the classical features akin to a real potential. This work opens up
a new scope of investigation in both the studies namely, the PT-symmetry and the classical
mechanics. We believe that with this, PT-symmetric quantum mechanics passes one of the
most stringent tests towards a description that is consistent and compatible with conventional
quantum mechanics.

Acknowledgment

I would like to thank Professors Carl M Bender and Michael V Berry for an encouraging
discussion.

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Znojil M (ed) 2003, 2004 Proc. 1st and 2nd Int. Workshops on ‘Pseudo-Hermitian Hamiltonians in Quantum

Physics’ Czech. J. Phys. 54
[3] Ahmed Z 2001 Phys. Lett. A 282 343
[4] Bender C M, Dunne G V and Meisinger P N 1999 Phys. Lett. A 252 272
[5] Ahmed Z 2001 Phys. Lett. A 286 231
[6] Ahmed Z 2004 Phys. Lett. A 324 152
[7] Jain S R unpublished
[8] Bender C M, Berry M V, Meisinger P N, Savage V and Simsek M 2001 J. Phys. Math. Gen. 34 L31
[9] Bender C M, Boetcher S and Meisinger P N 1999 J. Math. Phys. 40 2201

[10] Nanayakkara A and Abayaratne C 2002 Phys. Lett. A 303 243
[11] Kaushal R S 2001 J. Phys. A: Math. Gen. 34 L209
[12] Ahmed Z 2001 Phys. Lett. A 290 19
[13] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[14] Znojil M and Levai G 2002 J. Phys. A: Math. Gen. 35 8793
[15] Brack M and Bhaduri R K 2003 Semiclassical Physics (Oxford: Westview)


	
	Acknowledgment
	References

